

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Object-oriented programming

Course

Field of study

Computing

Area of study (specialization)

Level of study

First-cycle studies

Form of study

part-time

Year/Semester

2/3

Profile of study

general academic

Course offered in

Polish

Requirements

compulsory

 Number of hours

Lecture

16

Tutorials

Laboratory classes

Projects/seminars

16

Other (e.g. online)

Number of credit points

3

Lecturers

Responsible for the course/lecturer:

Marek Wojciechowski, PhD, Dr. Habil.

email: Marek.Wojciechowski@cs.put.poznan.pl

phone: 61 6652962

faculty: Computing and Telecommunications

address: Piotrowo 2, 60-965 Poznań

Responsible for the course/lecturer:

 Prerequisites

A student beginning this course should have basic knowledge gained in the courses: Introduction to

Computing and Algorithms and Data Structures.

They should have the ability to solve basic algorithmic problems, to write, modify and test computer

programs on their own, and the ability to obtain information from indicated sources.

They should also understand the need to broaden their competences and be ready to start cooperation

within the team. Moreover, in the scope of social competences, the student must present such attitudes

as honesty, responsibility, perseverance, cognitive curiosity, creativity, personal culture and respect for

other people.

Course objective

1) Teach students the principles of creating universal software modules suitable for multiple use in

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

2

various programming projects and easy to develop and maintain, by using unique solutions available in

object-oriented languages, which promote the development of computer programs with such features.

Furthermore, the aim is to teach students to create their own semantically rich and universal abstract

data types.

2. Develop students' skills in designing and creating information systems with correct architecture, i.e.

one that is characterized by cohesiveness of program modules' components and loose coupling between

them.

3) Developing in students the ability to communicate while independently creating computer program

modules to be composed into one whole. Moreover, acquiring the ability to search for optimal, ready-

made and available components to be used in their own complex computer programs.

Course-related learning outcomes

Knowledge

1. has structured, theoretically backed up general knowledge of algorithms, languages and paradigms of

programming and software engineering, (K1st_W4)

2. knows and understands the generic classes, exception handling in object-oriented languages and is

able to apply these mechanisms to create reusable universal software modules that guarantee the

construction of high quality computer programs, (K1st_W6)

3. knows and understands the rules of construction of computer programs processing persistent objects

stored in the database and the rules of construction of programs with a complex multi-faceted

architecture. (K1st_W6)

4. knows basic methods, techniques and tools used in solving simple computing tasks, algorithms and

problems, building computer systems, implementing programming languages and software engineering,

(K1st_W7)

5. has the knowledge necessary to transform object-oriented models of reality fragments into selected

object-oriented languages, (K1st_W7)

6. has the knowledge necessary for modelling and object-oriented analysis of small fragments of the

"real world" related to different areas of application, (K1st_W7)

7. knows and understands the syntax and semantics of basic and complex object mechanisms such as:

classes, objects, interfaces and implementation of objects, object encapsulation, class inheritance and

subtype relationship, polymorphic variables and substitutions, dynamic binding, (K1st_W7)

Skills

1. has the ability to develop high quality computer programs that comply with the criteria defined in ISO

standards, and in particular are characterised by: reliability, ease of maintenance and development,

flexibility, ease of testing, portability and ease of code sharing, (K1st_U9)

2. can create an object-oriented model of a simple system (e.g. in UML) (K1st_U10)

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

3

3. is able to select the programming language appropriate to the programming task (K1st_U10)

4. is able, according to a given specification, to design and implement a simple information system using

appropriate methods, techniques and tools (K1st_U11)

5. has the ability to define classes and implement them using at least two popular tools, i.e. object-

oriented programming languages: C++ and Java, (K1st_U11)

6. can work in a group (K1st_U18)

Social competences

1. understands that programming languages are evolving rapidly and that some programming skills are

quickly becoming obsolete (K1st_K1)

2. is aware of the importance of correct modeling of reality in solving engineering problems; knows

examples of faulty information systems and understands the causes of their failure (K1st_K2)

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Formative evaluation:

(a) as for lectures:

- activity during lectures

(b) as for project classes:

- on the basis of the evaluation of the current progress on tasks and the final project

Summative evaluation:

a) as for lectures, the verification of the assumed learning outcomes is carried out by:

- assessment of knowledge and skills shown on the written test

- discussion of the results of the test

b) as for project classes, the verification of the assumed learning outcomes is carried out by:

- evaluation of the final project

Programme content

The programme of lectures in the course includes the following topics:

The premises of object-oriented programming resulting from the analysis of software crisis roots. The

idea of a new programming paradigm, which supports the creation of high quality programs. Searching

for an optimal programming language and methodologies appropriate for building universal software

modules for multiple use. Relationship of the object-oriented paradigm with software engineering.

Quality metrics for software architecture: cohesion and independence of software modules.

Programming languages with expandable system of data types. Implementation of the concept of

abstract data types. Brief presentation of the history of object-oriented languages.

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

4

Modelling and object analysis with CRC cards and UML language for class and object diagrams and

collaboration diagrams. Getting to know the basic constructors of an object model: class, object, class

variables and operations, generalization relationships, relationships between classes. Examples of

simple models of reality fragments. Methodologies for modeling and analysis. Transformation of object

diagrams into object-oriented programming languages.

Definitions of basic object concepts: object, attributes (variables) of an object, object methods,

transmission of messages triggering calls of object methods, class interfaces, objects as class instances,

Examples of defining classes including: definitions of class constructors and destructors, operator

overloading, class variables and methods. Encapsulation of classes as a mechanism for limiting

relationships between software modules. Friendship relationship between classes. Dual view of the class

as a new data type and as a software module. Comparison of solutions to simple problems in a

functional and object oriented way. Implementation of complex objects and relationships between

objects. Getting to know the types of operators to copy complex objects. Architecture of an object

virtual machine.

Class inheritance and subtype relationship between classes. Definition of new features of derived

classes, hiding of methods and variables, covariant redeclaration of variables and methods and

implementation of abstract classes. Overview of class inheritance network topology in different

programming languages. Virtual inheritance in C++ language. Inheritance of class constructors and

destructors. Methods of applying the class inheritance mechanism.

Subtype relationships between classes. Defining polymorphic variables and polymorphic substitutions.

Increasing versatility and flexibility of classes by using late message binding. Implementation and

application examples of the late binding mechanism. Late binding and reflection mechanisms of data

types. Dynamic projection of data types.

Further increase of class versatility by defining generic classes. Creating universal programs while

maintaining strong data typing. Application limits of generic classes: limited and unlimited genericity.

Typical examples of generic classes. Class templates in C++ language.

Creating reliable computer programs. Code security levels. Basic strategies of creating programs

resistant to errors and exceptions. Methodologies and techniques of exception handling in object

oriented languages. Defining and reporting exceptions. Capturing exceptions and their handling.

Examples of applications of exception handling. Validity of exception handling for reusable software

modules.

Methodology for creating software that meets its specification. Formal specification of semantics of

abstract data types. Contract programming: analysis and programming of class axioms and start and end

conditions of methods. Defining and applying for assertions in object oriented languages.

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

5

Ensuring persistence of objects by storing them in a database. Functionality of system software for

object-relational mapping (OR/M). Methods of correct mapping of a network of classes into a relational

database scheme.

Cases of functionally complex programs with intersecting aspects. Extension of object-oriented

languages with explicit definition of aspects. Transfer of control between intersecting aspects. Examples

of using aspect languages.

The above issues are illustrated with examples in various object-oriented programming languages,

including C++ and Java.

Within the framework of the project activities, students will become familiar with two object-oriented

programming languages in depth: C++ and Java. The exercises consist in creating programs containing

basic structures of object-oriented languages presented during the lectures. In addition, system libraries

are used for: collections, GUI, streams, multithreading and serialization of object state. The

familiarization with each of the two programming languages ends with independent realization of small

projects including object analysis and program implementation.

Some of the aforementioned course contents will be realized as part of the student's own work.

Teaching methods

Lecture: multimedia presentation, presentation illustrated with examples given on the board,

multimedia show.

Project classes: practical exercises, discussion, teamwork, multimedia show, case study, demonstration,

brainstorming.

Bibliography

Basic

1. Programowanie zorientowane obiektowo, Bertrand Meyer, Helion, Warszawa, 2005

2. Metody obiektowe w teorii i praktyce, Ian Graham, WNT, Warszawa, 2004

3. Smalltalk-80: The Language and its Implementation, Goldberg A.J., A.D.Robson, Addison-Wesley, 1983

4. Język C++, Bjarne Stroustrup, WNT, Warszawa, 1994

5. The Java(TM) Programming Language (3rd Edition), Ken Arnold, James Gosling, David Holmes,

Addison Wesley Professional, 2000

6. Programowanie obiektowe, Peter Coad, Edward Yourdon, Read Me, 1994

7. Analiza obiektowa, Peter Coad, Edward Yourdon, Read Me, 1994

8. Nowoczesne projektowanie w C++, Andrei Alexandrescu, WNT, 2005

Additional

1. Simula Begin, Graham M. Birtwistle, O.J. Dahl, B. Myhrhaug, K. Nygaard, 1973

2. https://docs.oracle.com/javase/specs/

3. https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-334.pdf

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

6

Breakdown of average student's workload

 Hours ECTS

Total workload 75 3,0

Classes requiring direct contact with the teacher 32 1,5

Student's own work (literature studies, preparation for project

classes, preparation for tests, project preparation)
 1

43 1,5

1
 delete or add other activities as appropriate

TRIAL MODE − a valid license will remove this message. See the keywords property of this PDF for more information.

